
Applications 
 
 

1.   LOANS   ( Derive formulas for payments and outstanding balances) 

 

      Recall  
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   we must find eigenvalues and eigenvectors. 
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 Therefore, 
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Formula # 1 

 

The outstanding balance, B ,  of a loan after n  payments have been made is  
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Formula # 2 

 

A loan is completely paid if the outstanding balance 
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If we solve for x  we can determine the monthly payment. 
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which simplifies to 
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Homework 

 

 Redo problems involving loans (Linear Transformations PDF) using the two   

 formulas from the previous page.  



Networks Probabilities and Matrices 

 
 Stochastic Vectors 
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1

0

 
 
 

,    

1/ 3

1/ 3

1/ 3

 
 
 
 
 

 ,    

0.1

0.2

0.3

0.4

 
 
 
 
 
 

 ,   

0.0001

0.9

0.09

0.009

0.0009

 
 
 
 
 
 
 
 

 

 

    

    Converting regular vectors into stochastic 
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       Stochastic Matrices 
 

 

        A matrix S is called stochastic if all its columns are probability vectors (column  

        stochastic or left stochastic).  
 

        Examples 
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       Theorem 9 
 

        If S is an n n  stochastic matrix, then it has a dominant (largest) eigenvalue 
1 1    

        and the rest of its eigenvalues  
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       Proof   Beyond the level of this course  

 
        



 2.  PageRank 

 

      Consider the following group of webpages with the given links. 

       

     

    a.   Find the adjacency matrix  A  for the above graph if 
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      b.   Convert the adjacency matrix  A  into a stochastic matrix  S .    

 

w 1  
w 2  

 

w 5  

 

w 4  

 

w 3  

 



                                          

1 1 1
0 0

3 3 2

1 1 1
0 0

2 3 2

1 1
0 0 0

2 3

0 1 0 0 0

1 1
0 0 0

3 3

S

 
 
 
 
 
 


 
 
 
 
 
  

 

     

   c.  Define the “Google Matrix”, G , of the given network. For a general n n stochastic  

        matrix S , we define  
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          where the probability p  is called a dumping factor ( p 0.85  these days). What  

          this essentially says is that with probability 0.85 a random surfer uses links to  

          navigate from one webpage to another, and with probability 0.15 types a URL  

          (web address) or uses bookmarks to continue surfing the web.   
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    d.   Rank the five webpages using the eigenvector corresponding to the dominant  

          eigenvalue of the matrix G . 

 

       



       Transition probabilities, to be explained in class, after 2, 10 and 1000 iterations are  

       given below. 
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    The vector  
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 is the eigenvector of G  corresponding to the eigenvalue 1  , 

 and determines the PageRank of the five webpages. Therefore, webpage 2 will be the 

highest rank, webpage 4 will be the 2nd highest, … ,  and webpage 5 will be the lowest 

rank webpage (more information during the lecture).  



 Homework 

 

 Consider the following network with the given links. 

 

 

 

 

 

 

 

 

      a.   Construct the adjacency matrix ( )A  of the above graph. 

        b.   Convert the adjacency matrix into a stochastic matrix ( )S . 

        c.   Find all eigenvalues and eigenvectors of S .  

        d.   What does the dominant eigenvector of S  tell you about the network?  
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 3.  Towers of Hanoi 

 

 

 

 
 

 


